

Quality Assurance in Blockchain

Arpan Sarkar: Senior Manager ï Business Development

Jibendu Narayan Mazumder: Associate Director ï Business Development

Cognizant Technology Solutions

Contents
Abstract ... 3

Chapter 1: Introduction ... 4

Chapter 2: First Generation Blockchains ... 6

2.1 The Context ... 6

2.2 Bitcoin Service Providers .. 7

2.3 Mining Pools .. 9

2.4 SideChains .. 9

Chapter 3: Second Generation Blockchains ... 10

3.1 The Context ... 10

3.2 Developing Dapps and the corresponding QA Needs .. 10

3.2.1 Step 1: Running a node in the Ethereum Network ... 11

3.2.2 Step 2: Creating/integrating wallets & sending/receiving ethers 12

3.2.3 Step 3: Writing Smart Contracts ... 13

3.2.4 Step 4: Compiling Smart Contracts .. 13

3.2.5 Step 5: Deploying Smart Contracts in Ethereum Blockchain 14

3.2.6 Step 6: Building the Dapps .. 14

3.2.7 Step 7: Running & using the Dapps ... 15

3.2.8 Step 0: Initial Coin Offering (ICO) ... 16

3.2.9 Summary .. 16

Chapter 4: Emerging Areas ... 18

Chapter 5: Blockchain QA Catalogue .. 19

References & Appendix .. 20

Author Biographies.. 21

Abstract

Blockchain is rapidly revolutionizing the way enterprises conduct their business processes. A

new paradigm of trustless business transactions is fast evolving that needs no intervention from

central regulatory authorities. And, this is made possible with a decentralized peer-to-peer

network of nodes, each maintaining a local copy of transaction ledger and mutually

synchronizing on a near real-time basis.

The genesis of this Distributed Ledger Technology was in Bitcoin, but gradually others have

evolved - Ethereum, Hyperledger, Multichain, Corda, Monax etc. These have varying

features/tech stack, but ensures security / immutability / decentralization to align to trustless

model. Based on respective needs, enterprises across industries are choosing from this basket.

Be it Document Management in Healthcare or Trade Finance in BFS, Blockchain in ubiquitous

today.

Quality Assurance in Blockchain needs close examination because of its fundamental difference

from Traditional QA. Blockchain QA involves a balanced combination of:

¶ White-box Testing ï Involves testing the core of the framework (e.g. automated unit
testing of smart contracts using frameworks like Embark/Truffle/Dapple/Populus)

¶ Grey-box Testing - Involves testing integrations between blockchain framework &
applications (e.g. API Testing for validating access control, wallet balances etc)

¶ Black-box Testing - Involves testing of blockchain application functionalities / business
rules (e.g. issuance of cryptocurrencies)

¶ Non-Functional Testing ï Involves performance and security testing (e.g. validation of
performance on pumping large transaction volume into the blockchain network, secured
blockchain access, wallet signature etc.)

Additionally, this paper will also explore areas like Blockchain-as-a-Service, Blockchain Cloud,

Blockchain IoT etc. and their implications on Quality Assurance.

Chapter 1: Introduction

All of us remember the famous article of Marc Andreessen “Why Software is Eating the World”

in the Wall Street Journal in 2011. Little did he know that very soon software will eat the Wall

Street and the other financial hubs of the world. The technology that is heralded to bring about

this paradigm shift is not DevOps, Analytics or Cloud but a distributed ledger technology called

Blockchain. In traditional models any transaction needed a third party who played the role of a

trusted intermediary and verified identity of transacting parties, validated transactions and kept

record of transactions for future use. The centralized processing and record keeping was prone

to security breaches and could be compromised. Also, this slackened things down. We all know

how cumbersome and time consuming an international fund transfer can be. Any transaction in

traditional models could incur significant transaction cost.

Blockchain removes all these inefficiencies by maintaining a distributed ledger with record of all

the transactions from the genesis of the chain in every participating node or computer. As

inexpensive consensus based algorithm validates every transaction and modification of any

information in a block would require subsequent blocks to be changed across all the nodes in

the network making it virtually impossible to tamper with. The problem of “double spending” is

thus resolved without the help of a central authority.

The advent of Blockchain, as a technology, has brought about a paradigm shift in how

enterprises design their business processes around digital transactions. The promises of

immutability, security, distributed ledger and smart contracts make it attractive solution for

redesigning business models in all the industry verticals. Today, blockchain applications range

from faster/cheaper payments in the Financial Services industry to storing patient’s encrypted

health information without the risk of privacy breaches in the Healthcare industry. Benefits of

blockchains are manifold – on one hand it reduces transaction costs and settlement time, on

the other it increases transparency by eliminating the “third party” and secures transaction

ledger with no double spending or transaction repudiation. The complexities of immutability,

security and distributed ledger coupled with the promises of more recent developments of smart

contracts based blockchains make thorough quality assurance more pivotal than ever before.

While early blockchains were public, where anonymous users can participate and transact

permissioned and private blockchains do exist today. In a Permissioned blockchain, generally,

entities in the same industry participate and the clear preference is immutability and efficiency

and not complete anonymity. Stakeholders within an entity can participate in a private

blockchain consisting of completely known and trusted actors. Be it public blockchains like

Bitcoin or permissioned ones like Hyperledger and Monax, all blockchains can be broadly

categorized as first and second generation blockchains. For the sake if brevity, this paper will

elucidate our point of view on quality assurance for blockchains through one example of both

categories:

Chapter 2: First Generation Blockchains

2.1 The Context

First Generation Blockchains includes specific applications of blockchain technology that

support individual use cases such as peer to peer payments, remittances and registration of

asset ownership. The first application of blockchain was cryptocurrency which allowed real time

transfer of money between two parties, directly, without the intervention of a third party. Bitcoin

is the first virtual currency that is truly decentralized and all valid payment transactions are stored

in a public ledger called the blockchain. Bitcoin was invented by a mysterious programmer or

group of programmers guised as Satoshi Nakamoto in 2009. Today, around 16.4 M bitcoins are

in circulation out a maximum number of 21 M. Price of a Bitcoin has risen from 0$ in 2010 to a

whopping current price of 4800$. The following section will briefly explain the basic tenets of

Bitcoin.

¶ Distributed Ledger ï All blocks consisting of transactions get stored in a database and

all the nodes in the network have a synchronized copy of the ledger called the

blockchain. The ledger is open as everyone in the network can see the ledger.

¶ Mining - The bitcoin transactions are approved and authenticated by a group of special

nodes, known as Miners, who, in exchange of a nominal fee, solve a complex math

problem to gain the right to validate and add the next block, consisting of several

transactions, to the chain by broadcasting the solution to the network. This solution

involves identifying a special number called Nonce which when hashed using SHA-256

hashing algorithm, with the content of the block and the cryptographic hash of the

previous block results in a value lesser than the network’s difficulty goal. The solution

provided by the Miner has to get accepted by the network following a consensus

mechanism in order that the block gets added to the chain.

¶ Secured Transactions - Private-Public key cryptography makes transactions secure,

authenticated & verifiable. While private key implies ownership of Bitcoin and any

transaction must be digitally signed using a private key, public keys are used to verify

the signature. Since all the blocks are hashed with previous block any alteration would

render subsequent blocks invalid thereby establishing non-repudiation of the

transactions in the chain.

¶ Quasi-Anonymity ï In Bitcoin transactions cannot be tied back to the actual entities in

real world, who are identified with public addresses. Since the transactions on the

blockchain are public every payment can be linked to individuals making bitcoin

deceptively-anonymous or quasi-anonymous.

Several cryptocurrencies called Altcoins (e.g. Litecoins) have emerged over the years cloning

the Bitcoin source-code with minimal customizations. The acceptance of Bitcoin and similar

cryptocurrencies is on the rise among payment service providers, financial institutions and

merchants that form an essential part of the Bitcoin eco-system. Since little or no significant

change is expected in the way Bitcoin or similar cryptocurrencies work, application development

and customizations will be restricted to the peripheral systems which can be broadly bucketed

into three categories viz. Bitcoin Service Providers, Mining Pools and SideChains.

Quality Assurance (QA) is at the heart of these change heralded by Bitcoin as users of today

demand seamless user experience, flawless functionality and utmost security and a single glitch

can wipe out creditability among end customers. The following sections will explain the QA

landscape for Bitcoin in detail:

2.2 Bitcoin Service Providers

Widespread acceptance of Bitcoin as a mode of payment is necessitating merchants to jump

on the bandwagon lest they are left behind. In the recent times we have seen a surge in Bitcoin

applications which can be broadly classified as follows:

¶ Bitcoin Wallets: Bitcoin wallets allow sending bitcoins to acquaintances and shop with

merchants accepting bitcoin payments. Bitcoin wallets have desktop and mobile

versions and need to be thoroughly tested for user experience, compatibility, and

security (validation of transaction message signing and encryption) besides thorough

testing of the functionality and exposed REST APIs and JSON files. Transactions

initiated through the wallet have to be checked for details and status in blockchain

console like Blocktrail.com. Bitcoin wallets allow multiple users with role based access

necessitating access controls testing.

¶ Merchant portals and POS: POS terminals and merchant portals compatible with Bitcoin

will accept customer payments by generating dynamic QR codes which when scanned

and paid via customer Bitcoin wallets. Funds paid via Bitcoin can get deposited directly

to merchant’s bank account based on prevailing exchange rate. Thorough functional

testing of the functionalities and the direct bank deposit feature is required. The platforms

also allow setting specific transaction confirmation speed settings for high, medium and

low value transactions thereby mandating thorough performance testing.

Request/responses from wallets interacting with merchant portals and POS terminals

can be virtualized using available service virtualization solutions.

¶ Bitcoin ATMs and cards: Normal credit cards charge a processing fee of 2-3% making

these very expensive. Bitcoin Visa debit cards are already available in the market which

can be topped up in Bitcoin and used for transactions in all the major currencies of the

world making it a convenient and economical alternative to credit cards. Bitcoin ATMs

allow users to buy or sell bitcoins using their public addresses. All of these need thorough

functional and API testing.

¶ Escrow Services: Majority of the transactions in the bitcoin network are single-signature

transactions but bitcoin supports more complicated scenarios where a fund transfer is

only executed when more than one party signs. While manifestations of multiple-

signature wallets are plenty ranging from 2-of-2 multi-signature wallet to 1-of-2 husband

and wife petty cash joint account, the most widespread use is in 2-of-3 escrow services

where 2 signatures out of buyer, seller and escrow agent are required for any fund

transfer. The complex business logic needs to be thoroughly tested through generating

several scenarios and validating the status through blockchain console.

All the above mentioned quality assurance activities cannot be performed on the Bitcoin

MainChain. TestNet is an alternative version of Bitcoin blockchain, with a totally different

genesis block, that is used for testing as no one can afford to test in the MainChain which uses

real bitcoins. Testnet uses coins with no real value and can be obtained for free from faucet

sites. The current Testnet version is TestNet3 as it has already been reset 2 times. Any service

provider application should connect to TestNet for testing purposes by instantiating objects with

TestNetParams.get() instead of MainNetParams.get() or any other mechanism that allows the

app to connect to TestNet and not the BitCoin MainChain. Although the rules are relaxed for

TestNet mining a block still takes about 10 minutes. Starting from BitCoin Core 0.9 a regression

testing mode also has been made available which is designed to run only locally. In order to

connect to this objects need to use RegTestParams.get().

An ever expanding network and combinations mandates maximum possible automation

following a Test Driven Development approach for faster time to market. The diagram below

demonstrates the various QA activities involved:

2.3 Mining Pools

The days of the individual miners are gone as difficulty of mining increased and today group of

miners are pooling together their resources to share the combined computational power

required to mine Bitcoins splitting the reward based on the amount of resources contributed by

each of the miners. Some of the popular mining pools are AntPool, F2Pool, BTCC Pool, BitFury,

Slush etc. Mining pools use different mining protocols using different incentive sharing

mechanisms. Validation of the distribution of the mining incentive between all the different

miners based on the algorithm is core to any new mining pool. In order to test the algorithm for

different permutation and combinations parameterized automation testing is the key.

2.4 SideChains

Sidechains are completely distinct blockchains that can be connected to the Bitcoin MainChain

via a two way peg also known as Simple Payment Verification or SPV which allows coins to be

exchanged between the two chains contingent on a deterministic exchange protocol. The

MainChain can transfer a specified number of coins to a special output address based on some

algorithm and can then become locked and un-spendable in the MainChain. An equivalent

amount of coins can then be used in the SideChain. The SideChain can have smart contracts

that determines return of the coins to the MainChain based on a deterministic algorithm.

Functional validation of the SPV algorithm, including positive and negative scenarios, is crucial

for implementation of SideChain networks. Since the SideChain is a different network than

Bitcoin the same needs to be tested for the consensus protocol for validating transactions and

adding blocks to the chain.

The various types of testing that applies to each of the three scenarios discussed above are

summarized below:

Sl No Types of Testing

BTC Service

Provider

Mining

Pools SideChains

1 UI testing

2 Functional Testing

3 Validation transaction elements in blockchain console

4 Validate request/responses/risk analysis via APIs

5 Performance testing

6 Security testing

7 Service virtualization

8 Validate mining reward distribution algorithm

9 Validation of consensus protocol

10 Validation of two way peg - SPV algorithm

11 Device testing

12 Automation testing

13 Multi-Signature logic testing

High

Medium

Low

None

Chapter 3: Second Generation Blockchains

3.1 The Context

Nowadays, the terminologies Bitcoin and Blockchain are used almost synonymously. However,
the reality is that Bitcoin, a peer to peer electronic cash system that enables online Bitcoin
payments, is just one of the numerous applications of Blockchain. There are a large number of
such decentralized applications that leverage the Blockchain technology to solve different
business problems.

ñBitcoin is first and foremost a currency; this is one particular application of a blockchain.
However, it is far from the only application. To take a past example of a similar situation, e-mail
is one particular use of the internet, and for sure helped popularize it, but there are many others.ò
Dr. Gavin Wood, Ethereum Co-Founder

The first-generation applications, like Bitcoin and several other crypto-currencies, were all
designed individually to perform a defined set of activities. This created a problem for the
developers since they had to start from scratch every time a new requirement came.

 ñI thought those in the Bitcoin community werenôt approaching the problem in the right way. I
thought they were going after individual applications; they were trying to kind of explicitly support
each use case in a sort of Swiss Army knife protocol.ò Vitalik Buterin, inventor of Ethereum

This problem triggered the need for the second-generation decentralized apps that would
not target individual application needs, but would provide a framework to the developers to build
any application. This has literally opened up infinite possibilities and has made Blockchain a
revolution. The second generation of decentralized applications kicked off with Ethereum.

In essence, any centrally governed operation can be decentralized using Ethereum, thereby
eliminating the need of intermediaries in anything and everything ranging from payments to title
registration to voting etc. In Ethereum, lingo this is driven by ñDappsò. And, Dapps are built
through ñSmart Contractsò, which are nothing but self-executing pieces of code that are
triggered on certain business rules being met.

Thus, Quality Assurance for Ethereum Blockchain primarily boils down to testing the Smart
Contracts. In order to appreciate the testing needs for Smart Contracts, we need to understand
the process of developing and deploying them as well. In this paper, we shall discuss the high-
level process of developing Smart Contracts and the corresponding testing needs. Alongside
that, we shall also take a look at other QA aspects of the Dapp like the UI testing needs, Non-
functional testing needs etc.

3.2 Developing Dapps and the corresponding QA Needs

Dapp development can be considered as a workflow comprising 7 broad steps, as mentioned
below:

¶ Running a node in the Ethereum Network

¶ Creating/integrating wallets & sending/receiving ethers

¶ Writing Smart Contracts

¶ Compiling Smart Contracts

¶ Deploying Smart Contracts in the Ethereum Blockchain

¶ Building the Dapps

¶ Running & using the Dapps

Additionally, before building the Dapp, there is a Step 0, which is crowd-sale of tokens through
Initial Coin Offering (ICO).

The following diagram depicts the workflow comprising the above steps and the high-
level QA needs for the same:

We shall now discuss these steps in detail to understand the processes and the QA needs for
each step:

3.2.1 Step 1: Running a node in the Ethereum Network

The process

¶ There are different command line tools based on different programming languages
(geth, eth, Pyeth etc.) that can run a full Ethereum and provide multiple user interfaces
like the command line interface, an interactive console and a JSON-RPC server. One
can run an Ethereum node by downloading the latest version of the client compatible
with their respective OS & installing the same on their system. The same can then be
fired from the command prompt and it will start up and begin connecting to peers and
receiving blocks.
In case one wishes to connect to the testnet, the chain specs in the JSON config file
need to be changed appropriately before firing the client from the command prompt. This
will make it point to the test network which will make the sync process faster.

¶ Running a node in an Ethereum network is also possible by installing and running the
Ethereum Mist wallet client, which also helps create addresses & send/receive
transactions in a simple way.

On completion of installation, the user is prompted to connect either to the mainnet or to
the testnet. In case one wishes to connect to the testnet, he or she just needs to select
the appropriate option and this will make the sync process faster.

¶ There are clients available in the market that connects users directly to the testnet, e.g.
testrpc. Testrpc creates a set of pre-funded accounts that will be listed when it starts up.
It’s is also very fast and hence easier to develop and test with. Currently other such
options are also available which may be explored for the same purpose.

The QA Needs

This step is pretty standardized and involves only downloading and installing pre-defined
libraries and files. Hence there is minimal QA need for this step. We just need to validate
whether the synchronization with the peers in the Ethereum network has been done properly
by comparing the latest block at the top of stats.ethdev.com with the block number output in
the client node’s log.

3.2.2 Step 2: Creating/integrating wallets & sending/receiving ethers

The process

¶ Post running a node in the network with an Ethereum client (say geth), one can create
wallets and send and receive ether. This can be done with geth through the JavaScript
console or through JSON RPC (remote procedure calls) using a command like cURL.

¶ In case a user connects to the network using the Mist browser (as described in the 2nd
bullet in Step 1 description), the wallet configuration is done in Step 1 itself. Post
selection of the network (mainnet or testnet), the user is prompted to choose whether or
not to import a wallet created before. In case the user has a pre-created wallet file, the
same can be imported. If this step is skipped, the Mist wallet is configured and the user
is required to select a password to protect it. Subsequently password and keyfiles need
to be saved.

¶ Once the wallet is configured, ethers can be sent and received from it. In case of
mainnet, real ethers need to be transacted, while for testnet, the transactions can be
completed with dummy ethers claimed for free from Ethereum Faucet.

The QA Needs

This step also mostly involves standardized processes like downloading and installing pre-
defined libraries and files. Hence this step also doesn’t have any major QA needs. However,
medium-grade testing is required in this step to validate integration with imported wallet files, if
any, etc. Some of the key QA aspects in Step 2 are as follow:

¶ Validation of wallet integration, especially if a pre-existing wallet file is imported

¶ Validation of the public key shown on the wallet interface (can be validated against
keyfiles, which are present in the “keystore” folder under the installation directory);
validation of the public key format (hexadecimal, 40 bits etc.)

¶ Validation of the ether balance shown on the wallet interface (can be validated against
the count of ethers sent from another wallet or through Ethereum Faucet)

¶ Validation of the ability to access wallet balance with private key and to send ethers
from the wallet to another wallet with known public key

¶ Validation of the ability to create customized smart contracts (through the “contracts” tab
in case of Mist wallet or similar button / tab for other wallets)

¶ Negative testing to validate if smart contracts cannot be created without requisite ether
balance / withdrawal not possible beyond daily limit set (if any)

3.2.3 Step 3: Writing Smart Contracts

The process

¶ Smart Contracts can be written in Solidity (similar to JavaScript) or Serpent (similar to
Python) or LLL (based on Lisp). Presently, Solidity is the most popular programming
language for Smart Contracts. The files/libraries for the chosen language need to be
downloaded and installed prior to using the same. Ethereum has its Remix IDE which
can be used to write the Smart Contracts.

¶ There are browser-based IDEs as well that can be leveraged for writing smart contracts,
e.g. Cosmo, Ether.camp etc. The user can even point his/her local node at these hosted
instances by opening up a port. Ether.camp IDE has a sandbox test network with an
auto-generated GUI for testing as well as a sandbox transaction explorer at
test.ether.camp. The same explorer for the live Ethereum network is at
frontier.ether.camp.

¶ There are readily available Dapp development frameworks like Truffle, Embark, Dapple,
Populus etc. that also provide the IDE for coding Smart Contracts.

The QA Needs

Smart Contracts form the backbone of Dapps. Hence it is very crucial that we do a thorough
Unit Testing of the Smart Contracts. Cognizant proposes to use a Test Driven Development
(TDD) approach to support this unit testing. In order to isolate the contract functionalities from
other aspects, unit testing of the smart contracts would be done through other contracts.
The tests will be divided into 3 categories:

¶ The first category is for contract-to-contract. It involves creating a test-contract that calls
the target contract and processes the results. The test-accounts would be created inside
the test contracts

¶ The second category involves creating different accounts (through the blockchain client),
deploying the contract and using the test-accounts to transact with the contract. These
accounts would all be on the same node

¶ The other category involves setting accounts up on different nodes and do the
transactions over the network

The rationale behind the above approach is that it is easy to track the reason for failure by
following this. If the last category of tests fails, it may be due to multiple reasons like network
issues, API bugs, parameters passed, calling contract etc. besides being due to issues in the
contract under test. However, if the 2nd category fails, it could be due to all of the above reasons
except for networking issues. Hence, if the second passes, but the third fails, the reason most
likely is a network issue. Thus, by looking at the test results for all the 3 categories, it may be
possible to unearth the definite reason of failure.

While conducting unit testing, the user may want to use standardized assertion methods or to
publish results in the form of Solidity ñpromisesò (IFTTT language) or to conduct coverage
analysis etc. In such cases, it is recommended that we leverage Truffle / Embark / Dapple /
Populus etc. or Ethereum solUnit framework.

3.2.4 Step 4: Compiling Smart Contracts

The process

¶ Assuming that a Smart Contract is written in Solidity (the most popular language for this
purpose), the user should use Solc to compile it. It’s from the C++ libraries and the user
needs to download and install it. Similarly, Serpentine and LLL have their own compilers

¶ There are browser-based compilers like Cosmo available in the market which can be
leveraged without the hassle of installation

¶ Dapp dev frameworks mentioned above (Truffle/Embark/Dapple/Populus) also provide
a ready facility to compile the Smart Contracts

¶ Users can also compile solidity code via Ethereum clients like geth, using the JSON-
RPC method eth_compileSolidity. However, the Solidity compiler must be installed on
the client for this.

¶ Post compilation of the smart contract, a .sol binary is received back. The bytecode file
can be found in the bin folder

The QA Needs

Not Applicable

3.2.5 Step 5: Deploying Smart Contracts in Ethereum Blockchain

The process

¶ In order to deploy a Smart Contract, we need to provide the amount of Ether that we
wish to deposit in the Smart Contract, the hex-formatted bytecode generated by the
compiler and the source address

¶ This step signs the contract using the node’s wallet address or any other specified
address

¶ Post deployment, the contract’s blockchain address is received back along with the ABI,
which is a JSON representation of the compiled contract’s variables, events and
methods that can be called

The QA Needs

Smart contract deployment requires medium-grade QA needs. Once the smart contract is
deployed to the Ethereum network, we need to validate the parameters to determine the
success of the deployment. We can follow any one of the following methods to conduct this
validation:

¶ Querying the status of the smart contract by eth_call JSON-RPC call; eth_call allows
users to call a method on a smart contract to query a value

OR

¶ Validation of the transaction from the BlockExplorer viz. ethercan.io; the users
should browse to etherscan.io and search with the transaction id / address and
subsequently validate the from (node’s wallet public key) and to (contract’s blockchain
address received on deployment) addresses, the Ether value, the Gas Limit etc.

3.2.6 Step 6: Building the Dapps

The process

¶ Dapps will essentially have 2 parts: a) the front-end & b) the Smart Contracts

¶ The front-end will be as usual, built with HTML/CSS/JavaScript

¶ The Smart Contracts, compiled and deployed in the Ethereum network, will be called by
the Dapps using Ethereum web3.js JavaScript API and they will perform certain
functionalities based on the business rules

The QA Needs

Building Dapps was the goal for which we did all of the above, right? So, this is the culmination
of everything that we have performed and validated till this point. The Dapps, therefore, need a
thorough high-grade testing from several perspectives. Discussed below are the same:

¶ Functional Testing
o All business rules to be triggered by Smart Contracts need to be validated

thoroughly with all boundary and negative conditions (e.g. functional validation
of Smart Contract based profit sharing in a tiered manner based on revenue
generated)

o Validation of Dapp Workflows
o Transaction Testing involving sending of ether from one wallet to another (this

is similar to the smart contract deployment transaction validation from
etherscan.io that we discussed in Section 5)

¶ API Testing
o Request-response simulation for Ethereum web3.js JavaScript APIs used by the

Dapps to call the internal Smart Contracts methods
o Request-response simulation for APIs built for integration of Dapps to the

interfacing systems

¶ User Interface (UI) Testing
o All UI aspects like colour, logo, resolution, labels etc. need to be thoroughly

validated
o Ease of navigability should also be validated very thoroughly

¶ Cross-browser / cross-device testing
o We have APIs for DApps that save users the trouble of running a local Ethereum

node, thus making these accessible over web browsers/mobiles; therefore,
cross-browser/cross-device testing for Dapps is crucial to ensure that users of all
platforms & devices have a seamless experience

¶ Usability Testing

¶ Accessibility Testing

¶ Performance Testing
o Validation of throughput based on gas price & gas limit adjustments
o Gas price & gas limit taken together govern the maximum amount of ether that a

user is willing to spend on transaction costs, i.e. he/she can spend no more than
(gas price * gas limit); the gas price can also affect how quickly a transaction
takes place depending on availability of other transactions with more profitable
gas prices for miners

¶ Security Testing
o Validation of private key based signing while accessing wallet funds (already

covered before)
o Validation of usage token based access to the Dapp

3.2.7 Step 7: Running & using the Dapps

The process

¶ Ethereum based Dapps are not owned by individuals; they are owned by a community
of people

¶ This ownership is determined through a crowd-sale mechanism which happens at the
outset, wherein people buy tokens of the Dapp in exchange for ether

¶ There are 2 types of tokens, viz. usage tokens (behave like native currency within the
Dapp and are used to pay transaction fees to write to the Blockchain; similar to Bitcoin)
& work tokens (grant ownership rights to the holders)

The QA Needs

As evident from the above section, there is a strong need for security testing for this step to
ensure that the usage and ownership of the Dapps are governed strictly on the basis of the
usage and work tokens respectively. We have covered the usage token related aspect in Step
6, while we shall cover the work token related aspect when we discuss the ICO. Hence we are
not detailing the QA needs here any further.

3.2.8 Step 0: Initial Coin Offering (ICO)

The process

¶ As discussed earlier, ownership of Dapps is governed by work tokens distributed at the
outset through a crowd-sale mechanism called Initial Coin Offering (ICO)

¶ These tokens are distributed in exchange for ether sent by the aspirants and this pool of
ether forms the funding for the Dapp project

¶ The value of the tokens in terms of ether may be fixed or varying with demand-supply

¶ Tokens can be generated by visiting Token Factory and leveraging their user-friendly
system

¶ Tokens can also be generating by coding Smart Contracts (known as Token Contracts)

The QA Needs

Based on the above discussion on ICO, we perceive the following QA needs for the same:

¶ Unit Testing of the Token Contracts (similar to Unit Testing of Smart Contracts
discussed earlier)

¶ Validation of the following to ensure ERC20 guideline compliance
o Getting total token supply
o Getting account balance
o Transferring tokens from one party to another
o Approving use of token as monetary asset

¶ Security Testing to ensure that ownership rights are governed in the right manner
based on work tokens (e.g. token based voting rights on whether a Decentralized
Autonomous Organization (DAO) should fund a Dapp or not)

3.2.9 Summary

Presented below is a diagrammatic representation of the QA needs discussed above:

Chapter 4: Emerging Areas

Blockchain as a Service - We are witnessing a spurt in Blockchain based applications and
banks and entrepreneurs are turning their attention to Blockchain as the pace of adoption
increases. Technology giants like Microsoft and IBM are trying to tap this opportunity by
providing developers and testers with a platform to experiment distributed ledger technology by
providing a cloud based blockchain development and testing environment. The platform allows
developers and testers to build prototypes, test and build customized blockchains for specific
use cases. The three biggest players in this area are as follows:

¶ Ethereum Blockchain as a Service by Microsoft Azure

¶ Rubix by Deloitte

¶ IBM Blockchain on Bluemix

Blockchain for Internet of Things - Blockchain and Internet of things (IOT) are the two biggest

technological development of recent times and the two need to get married together. Imagine a

situation where a connected network of vehicles exchanging information like traffic information,

navigation. Blockchain can enable tracking of the devices on the network. Blockchain based

IOT devices will find application in almost all the industry verticals ranging from Financial

Services to Real Estate Management. Blockchain with its distributed ledger and cryptography

will provide the necessary trust, record keeping, security and immutability for IOTs. With the

advent of smart contracts business conditions can also be implemented for IOT interactions.

Quality assurance needs for these emerging areas will be tremendous and organizations are

still blue-printing the right QA strategy to ride the tide of change.

Chapter 5: Blockchain QA Catalogue

Based on the above discussions, we observe that the vast ecosystem of Blockchain has diverse
QA needs which can be broadly sub-divided into 4 categories:

¶ White-box Testing

¶ Grey-box Testing

¶ Black-box Testing

¶ Non-Functional Testing

The following table presents a Blockchain QA Catalogue for Bitcoin & Ethereum aligned to
these 4 categories:

Testing

Categories
Bitcoin Ethereum

White Box

Testing

¶ Unit testing of SPV algorithm for
SideChains

¶ Unit testing of incentive distribution
algorithm for mining pools

¶ Unit testing of the consensus protocol
for SideChains

¶ Peer synchronization validation

¶ Unit Testing of Smart Contracts (including
Token Contracts)

Grey Box

Testing

¶ Validation of the REST APIs and JSON
files for calls between wallets,
merchant applications, BTC Service
Providers and BitCoin network

¶ Validation of APIs
o Dapp API calls for internal smart

contract methods
o Dapp API calls for interfacing

application integration

Black Box

Testing

¶ Transaction validation from Blockchain
Console

¶ Wallet integration and interface testing

¶ Device Testing

¶ UI Testing of Bitcoin Wallet

¶ Functional validation of multi-signature
escrow services functionality

¶ Integration and interface testing for
merchant portals and POS terminals
and interfaces

¶ Functional validation of direct to bank
deposit feature of BTC service
providers and associated exchange
rates

¶ Bitcoin ATM and cards testing and
associated fees

¶ Functional validation of SPV algorithm

¶ Functional validation of incentive
distribution algorithm for mining pools

¶ Transaction Validation from BlockExplorer

¶ Functional Testing of Dapps
o Wallet integration & interface testing
o Business rules testing
o Workflow testing
o Cross-browser/device testing

¶ UI Testing of Dapps

¶ ERC20 compliance validation

Non-

Functional

Testing

¶ Usability testing of BTC Wallets and
merchant portals

¶ Access controls testing for multi-user
wallets

¶ Security testing of transaction message
signing and encryption

¶ Performance testing of transaction
confirmation speed settings

¶ Service Virtualization

¶ Usability Testing of Dapps

¶ Accessibility Testing of Dapps

¶ Performance Testing for smart contract
transaction throughput validation

¶ Security Testing
o Key based wallet access
o Token-based Dapp access

References & Appendix

1. http://biccur.com/blog/2016/12/16/three-generations-of-blockchain/

2. http://www.oodlestechnologies.com/bitcoin-ebook

3. http://www.oodlestechnologies.com/blogs/Bitcoin-To-Get-More-Anonymous-With-The-
New-BIP-Called-Dandelion

4. https://bitcoinj.github.io/testing

5. https://bitpay.com/docs/testing

6. https://bitpay.com/integrations/drupal-commerce

7. https://bitpay.com/integrations/opencart

8. https://blockchain.info/api

9. https://blockchain.info/api/api_receive

10. https://en.bitcoin.it/wiki/Multisignature

11. https://en.wikipedia.org/wiki/Mining_pool

12. https://gendal.me/2014/10/26/a-simple-explanation-of-bitcoin-sidechains/

13. https://medium.com/@BrettNoyes/public-permissioned-and-private-blockchains-
3c32965e33c9

14. https://www.blocktrail.com/api

15. https://www.programmableweb.com/news/46-bitcoin-apis-bitstamp-bitcoin-charts-markets-
and-50btc/2013/06/11

16. https://www.slideshare.net/Tracxn/tracxn-sector-report-bitcoin-sept-2014

17. https://www.youtube.com/watch?annotation_id=annotation_2972284497&feature=iv&src_v
id=vWt9wRZ3Hhk&v=ASCz5uLs5EE

18. https://www.youtube.com/watch?v=5ROp9Ac3UqE

19. https://www.youtube.com/watch?v=LLZNvl90PC0

20. https://www.coindesk.com/price/

21. https://medium.com/@ConsenSys/

22. https://blockgeeks.com

23. https://monax.io/docs/tutorials/solidity/solidity_4_testing_solidity/

24. https://dzone.com/articles/what-blockchain-can-do-for-the-internet-of-things

25. https://letstalkpayments.com/3-companies-leading-the-blockchain-as-a-service-baas-
revolution/

Author Biographies

Arpan Sarkar
Senior Manager ï Business Development
Cognizant Technology Solutions

Arpan has an industry experience of 10+ years and works with Cognizant as a senior Business
Development professional in the Banking and Financial Services (BFS) Quality Engineering and
Assurance (QE&A) practice. His gamut of experience ranges from software development to technology
consulting, core banking and business development.

Arpan holds BE degree in Mechanical Engineering from Jadavpur University and an MBA degree from
XLRI Jamshedpur. Prior to joining Cognizant, he has worked with other esteemed institutions like Bank
of Baroda & Pricewaterhouse Coopers.

Jibendu Narayan Mazumder
Associate Director ï Business Development
Cognizant Technology Solutions

Jibendu heads the Business Development group within the Banking and Financial Services (BFS) Quality
Engineering and Assurance (QE&A) practice and has around 13 years of industry experience. He
specializes in architecting and overseeing implementation of transformational strategies & road maps for
large and complex QA programs and has helped several clients achieve their vision of becoming world
class QA organizations. Prior to joining Cognizant he worked with companies like
PricewaterhouseCoopers and KPMG.

Jibendu holds BE and ME degrees in Electronics and Telecom Engg. From Jadavpur University and an
MBA degree from Questrom School of Business, Boston University, USA

THANK YOU!

